Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med Devices (Auckl) ; 15: 277-283, 2022.
Article in English | MEDLINE | ID: covidwho-1997376

ABSTRACT

Background: Cold plasma has many characteristics that allow for effective wound healing. Due to its efficacy, we have applied it in treating patients with severe Covid-19 who have soft tissue skin lesions and diseases including burns, pressure ulcers, shingles, and contact or atopic dermatitis. This study aims to assess the general characteristics of Covid-19 patients with soft tissue lesions and to conduct a fundamental evaluation of the efficacy of cold plasmamed beams in treating soft tissue wounds in patients with severe Covid-19. Methods: This prospective study was conducted on 20 severe Covid-19 patients with soft tissue lesions at the Intensive Care Center for Covid-19 of Hue Central Hospital in Ho Chi Minh City from September 25 to November 11, 2021. These patients was performed cold plasma irradiation at any stage of wound progression, including new injuries and chronic wounds. Results: Among 915 severe Covid-19 patients treated at our center, 20 patients had soft tissue lesions. Grade I, II, and III pressure ulcers accounted for 70% of the 20 cases of soft tissue lesions and 1.53% of the total patients at the time of the survey. Pressure ulcers were present in only 0.55% of patients (5/915 patients). Eleven out of 20 patients (55.0%) had lesions before admission, and 9 (45.0%) had lesions that appeared after admission. After 14 days of treatment, 14/20 patients had complete epithelialization (70%), and in 18/20 patients, wound exudation had ceased. The wounds became painless; after 3 weeks, the rashes had completely disappeared. Conclusion: The study emphasizes that irradiation with cold plasma contributes to the wound healing process.

2.
Biosensors (Basel) ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1938692

ABSTRACT

A small DC magnetic field can induce an enormous response in the impedance of a soft magnetic conductor in various forms of wire, ribbon, and thin film. Also known as the giant magnetoimpedance (GMI) effect, this phenomenon forms the basis for the development of high-performance magnetic biosensors with magnetic field sensitivity down to the picoTesla regime at room temperature. Over the past decade, some state-of-the-art prototypes have become available for trial tests due to continuous efforts to improve the sensitivity of GMI biosensors for the ultrasensitive detection of biological entities and biomagnetic field detection of human activities through the use of magnetic nanoparticles as biomarkers. In this review, we highlight recent advances in the development of GMI biosensors and review medical devices for applications in biomedical diagnostics and healthcare monitoring, including real-time monitoring of respiratory motion in COVID-19 patients at various stages. We also discuss exciting research opportunities and existing challenges that will stimulate further study into ultrasensitive magnetic biosensors and healthcare monitors based on the GMI effect.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Delivery of Health Care , Electric Impedance , Humans , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL